Relational Algebra

o .
01

Relational
Formal Definitions

% f

Introduction

The relational algebra consists of a set of operations that take one
or two relations as input and produce a new relation as their result.

» select
* project
* rename

Relational Operations

* ynion

e Cartesian
product

» set difference

Review-Formal Definitions

A tuple is an ordered set of values (enclosed in angled brackets
<.>)
Each value is derived from an appropriate domain.
A row in the CUSTOMER relation is a 4-tuple and would consist of four values,
for example:

CUSTOMER is the relation name

Defined over the four attributes from domains; Cust-id: customer id values,
Cust-name: customer name values, Address; address values, Phone#;
phone values

<632895, "John Smith"”, "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
This is called a 4-tuple as it has 4 values
A tuple (row) in the CUSTOMER relation.

Review-Formal Definitions

A relation R is a set of such tuples (rows) having:
Heading: Hy or R(H) e.g: For R() R(H)={A...A,}
R(H) is constant over time.
Change in R(H) makes a new relation.
Body: r(R) set of
It is changeable over the time.

Relation state r(R): a specific state (or "value"” or “population™) of relation R - thisis a
set of tuples (rows)
r(R) ={t1, t2, .., tn} where each ti is an n-tuple
ti = <v1, v2, .., vn> where each vj element-of dom(Aj)
Degree: Number of heading.
Cardinality: Number of rows.
Think about a relation which the number of domains is smaller than degree?
Emp(ID,Name ,ManagerlD): the EmpID and ManagerlID are from the same domain of EmplD.

Formal Definitions - Summary

Formally,
Given R(A1, A2, .., AnN)

r(R) c dom (A1) X dom (A2) X ..X dom(An)
R(A1, A2, .., An) is the schema of the relation

R is the name of the relation
Al A2. ... An are the attributes of the relation

Formal Definitions - Example

Let R(A1, A2) be a relation schema:
Let dom(A1) = {0,1}
Let dom(A2) = {a,b,c}
Then: dom(A1) X dom(A2) is:
all possible combinations: {<0,a>, <0,b>, <0,c>, <1,a0>, <1,b>, <1,c>}

The relation state r(R) « dom(A1) X dom(A2)

For example: r(R) could be {<0,a0>,<0,b>,<1,c> }

This is one possible state (or “population” or “extension”) r of the relation R,
defined over A1 and A2.

It has three 2-tuples: <0,a0>, <0,b>, <1,c>

Definition Summary

Informal Terms Formal Terms
Table Relation
Column Header Attribute
All possible Column Values Domain

Row Tuple

Example — A relation STUDENT

Relatlon Name Attributes
STUDENT ‘// \\‘

Name Ssn Home_phone Address Office_phone| Age | Gpa
Benjamin Bayer | 305-61-2435 | 373-1616 | 2918 Bluebonnet Lane | NULL 19 | 3.21
/ Chung-cha Kim | 381-62-1245 | 375-4409 | 125 Kirby Road NULL 18 | 2.89
Tuples !\: Dick Davidson |422-11-2320 | NULL 3452 Elgin Road 749-1253 | 25 | 3.53
\ Rohan Panchal |489-22-1100 | 376-9821 | 265 Lark Lane 749-6492 | 28 | 3.93
Barbara Benson | 533-69-1238 | 839-8461 | 7384 Fontana Lane NULL 19 | 3.25

Figure 5.1

The attributes and tuples of a relation STUDENT,

Characteristics Of Relations

Ordering of tuples in a relation r(R):

The tuples are not considered to be ordered (because it is @
set), even though they appear to be in the tabular form

Ordering of attributes in a relation schema R (and of values
within each tuple):

We will consider the attributes in R(A1, A2, .., An) and the
values in t=<v1, v2, .., vn> to be ordered .

(However, a more general alternative definition of relation does not require
this ordering).

Because relation is a set, it does not have duplicated tuples.
In theoretical, degree of a relationis = 0

Characteristics Of Relations

Values in a tuple:
All values are considered atomic (indivisible).
Hence, composite and multivalued attributes are not allowed.
Each value in a tuple must be from the domain of the attribute for that column

If tuple t =<v1,v2, .., vn>is a tuple (row) in the relation state r of R(A1, A2, ...,
An)

Then each vimust be a value from dom((Ai)

A special null value is used to represent values that are unknown or
inapplicable to certain tuples.

If m=degree of relation and n=number of domains thenm > n

Characteristics Of Relations

Notation:

We refer to component values of a tuple t bu:
t[Ai] or tAl
This is the value vi of attribute Ai for tuple t

Similarly, t[Au, Av, .., Aw] refers to the subtuple of t containing
the values of attributes Au, Ay, .., Aw, respectively in t

Review: Key Constraints

Superkey of R:

Is a set of attributes SK of R with the following condition:

No two tuples in any valid relation state r(R) will have the same value
for SK

Thatis, for any distinct tuples t1 and t2 in r(R), t1[SK] # t2[SK]
This condition must hold in any valid state r(R)
Key of R (CK):
A "minimal” superkey
Thatis, a key is a superkey K such that removal of any attribute

from K results in a set of attributes that is not a superkey (does
not possess the superkey uniqueness property)

Review: Entity Integrity

Entity Integrity:
The Primary Key attributes PK of each relation schema R

in S cannot have null values in any tuple of r(R).
This is because primary key values are used to identify the individual tuples.

t[PK] # null for any tuple tin r(R)
It PK has several attributes, null is not allowed in any of these attributes

Note: Other attributes of R may be constrained to
disallow null values, even though they are not members

of the primary keu.
If a primary key is too long, the surrogate key is used.

Relational Operations Overview

Relational Algebra consists of several groups of operations

Unary Relational Operations
SELECT (symbol: a(sigma))
PROJECT (symbol: m(pi))
RENAME (symbol: p (rho))

Relational Algebra Operations From Set Theory
UNION (U), INTERSECTION (n), DIFFERENCE (or MINUS, =)
CARTESIAN PRODUCT (x)

Binary Relational Operations
JOIN (several variations of JOIN exist)
DIVISION

Additional Relational Operations
OUTER JOINS, OUTER UNION

AGGREGATE FUNCTIQONS (These com pute summary of information: for
example, SUM, COUNT, AVG, MIN, MAX)

ID name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
08345 | Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

- .

02

Unary Operations

3

SELECT

The SELECT operation (denoted by o (sigma)) is used to select a subset
of the tuples from a relation based on a selection condition.

The selection condition acts as a filter
Keeps only those tuples that satisfy the qualifying condition

Tuples satisfying the condition are se/ected whereas the other tuples
are discarded (filtered oul)

We allow comparisons using =, #, <, <, >, and = in the selection predicate.

Combine several predicates into a larger predicate by using the
connectives and (N), or(V), and not ().

SELECT

In general, the select operation is denoted by

g <selection condition><R> where

the symbol o (sigma) is used to denote the select operator

the selection condition is a Boolean (conditional) expression
specified on the attributes of relation R

tuples that make the condition true are selected
appear in the result of the operation

tuples that make the condition false are filtered out
discarded from the result of the operation

SELECT

Exam o le: 221;)22 game cliepr_nmne ;Zi]a(;i]
ot . instein hysics
S deptname = “Physics™ ({1STFUCION) 33456 | Gold | Physics | 87000

Find all instructors with salary greater than $90,000
S salary>90000 (instructor)

Find the instructors in Physics with a salary greater than $90,000

sz’eg,‘rr_mmw = "Physics” A salary>90000 (” 1Structor)

Consider the relation department. Find all departments whose name
is the same as their building NAME. department (dept_name, building, budget)

Grf@;;r_nmne = building (d@[)a;‘"ﬁ??@ﬁ [)

SELECT

SELECT Operation Properties

SELECTo is commutative:

o <COﬂdITIOI’ﬂ><O- < condition2> (R>) O-<COﬂdITIOﬂ2> <0- < condjtion1> <R>>
Because of commutativity property, o coscode (sequence) of SELECT operations
may be applied in any order:

o <cond1><0- <cond2> <G <cond3> (R>> 0 <cond2> (G <cond3> <0- <cond1> (R>)>

A cascade of hECT operations may be replaced by a single selection with @
conjunction of all the ¢ ndltlons

o <cond1>(0 < cond2> (O- <cond3>(R>> =0 <cond1> AND < cond2> AND < cond3>(P‘>>>

The cardinality in the result of a SELECT is:
less than (or equal to) the number of tuples in the input relation R: 0 < |o R)| <|R]

The degree of resulting relation from a Selection operation is:
same as the degree of the Relation given.

SELECT

fR' = o.(R) then what the candidate key of R'?
CKg, € CKg

Equivalent expressions
commutative Gc1(0c2 (R)) = O¢2 (Gc1(R)) = 0ciac2(R))

PROJECT

PROJECT Operation is denoted by m(pi)
This operation keeps certain co/lumns (attributes) from
a relation and discards the other columns.

PROJECT creates a vertical partitioning
The list of specified columns (attributes) is kept in each tuple
The other attributes in each tuple are discarded
Example: To list each employee’s first and last name

and salary, the following is used:

EMPLOYEE
T NAME, FNAME,SALARY ()

PROJECT

The general form of the project operation is:

T <attribute Iist><R>

mt (pi) is the symbol used to represent the project operation
<attribute list> is the desired list of attributes from relation R.

The project operation removes any duplicate
tupleps : P) OUP

This is because the result of the project operation must be o
set of tuples.

PROJECT

ID name salary

10101 | Srinivasan | 65000

EXOmple 12121 | Wu 90000
LI " 15151 | Mozart 40000

D H!DE name, .s-afur_r(’ nstructor) 22222 | Einstein | 95000
32343 | El Said 60000

33456 | Gold 87000

. 45565 | Katz 75000

2) H!DJ;ame*.,sfmn*rf 12(” 1structor) 58583 | Califieri | 62000
' 76543 | Singh 80000

76766 | Crick 72000

83821 | Brandt 92000

98345 | Kim 80000

3) Find the names of all instructors in the Physics department.

I1 (instructor))

name (Grfepr_umm’ = “Physics”

Notice that, instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

PROJECT

Q1 M5 pepr(FACUIY)

Q2: m, o, (Faculty)

QS: mClass(Faculty)

Class Dept

5 CSE

6 EE

Position

Assistant Professor

Class

Class Dept
5 CSE
5 CSE
6 EE
6 EE

Position

Assistant Professor

Assistant Professor

Assistant Professor

Assistant Professor

PROJECT

PROJECT Operation Properties

The cardinality in the result of projection m .,.(R) is always less or
equal to the number of tuplesin R 1 < |m4(R)| < |R|

The degree of resulting relation from a Project operation is equal to the
number of attribute in the attribute list ‘A’

In SQL, SELECT DISTINCT query is exactly as same as PROJECT here.

PROJECT

PROJECT Operation Properties
PROJECT is not commutative

T attribute List (M atribute List2{R)) 1= T agribute List 2 (TMagribute Listz (R))

T qist1> <T[<list2> (R>) = T gistr> <R>
As long as <list2> contains the attributes in <list1>.

EXTENDED PROJECT

[1;sTID, COID, (1.2+GRADE) RENAME As G)(STCOT)

Relational Algebra Expressions

We may want to apply several relational algebra
operations one after the other

Either we can write the operations as a single relational algebra
expression by nesting the operations, or

We can apply one operation at a time and create intermediate result
relations.

In the latter case, we must give names to the relations that
hold the intermediate results.

Single expression versus sequence of relational operations

To retrieve the first name, last name, and salary of all
employees who work in department number 5, we must apply
a select and a project operation

We can write a single relational algebra expression as follows:

nFNAME, LNAME, SALARY<G DNO=5<EI\/| PLOYEE))

OR We can explicitly show the sequence of operations, giving o

name to each intermediate relation:

DEP5_EMPS « 6 5o-5(EMPLOYEE)
RESULT <= 7 ryame Lname, satary (DEPS_EMPS)

RENAME

The RENAME operator is denoted by p (rho)
INn some cases, we may want to rename the attributes
of a relation or the relation name or both

Useful when a query requires multiple operations
Necessary in some cases (see JOIN operation later)

RENAME

The general RENAME operation p can be expressed by
any of the following forms:
p<(R) changes:
the relation name only to S
P 2. snH(R) changes:
the column (attribute) names only to B1, B1,Bn
Ps @1 82, en)H(R) changes both:
the relation name to S, and
the column (attribute) names to B1, B1,Bn

RENAME

For convenience, we also use a shorthand for
renaming attributes in an intermediate relation:

If we write;

" RESULT <« T gyame, Lname, saLary (DEPS_EMPS)
= RESULT will have the same attribute names as DEP5 EMPS
o IT we write:

= RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO)<= pe M L s 8, A SX SAL SU. DNO)
(DEP5_EMPS)

= The 10 attributes of DEP5 EMPS are renamed to F, M, L, S, B, A, SX,
SAL, SU, DNO, respectively.

Database State for COMPANY

All examples discussed below refer to the COMPANY database shown here.

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.
EMPLOYEE

‘ Fname ‘ Minit ‘ Lname ‘ Ssn ‘ Bdate ‘ Address | Sex | Salary | Superﬁssn‘ Dno ‘
Ak

DEPARTMENT

‘ Dname ‘ Dnumber ‘ Mgr_55n| Mgr_start_datel
YY)

DEPT_LOCATIONS

[Dnumber l Dlocation |
|

PROJECT
‘ Pname ‘ Pnumber | Plocation ‘ Dnum
A L |
WORKS_ON
\@ l Pno l Hours |
DEPENDENT

[Essn | Dependent_name | Sex ‘ Bdate | Relationship
|

Query to rename the relation Student as Male Student and the
attributes of Student RolINo and SName as (Sno, Name) with
selecting some tuples with “Condition”.

P MaleStudent(Sno, Name) TrRoIINo, SName(OCondition(StUdent))
Query to rename the attributes Name, Age of table Department
to A,B.

P (aB) (nName’ Age Department)
Query to rename the table name Project to Pro and its attributes
to P, Q, R.

P proe, 0, Ry (Project)
Query to rename the first attribute of the table Student with
attributes A, B, C to P.

P (p B ¢ (Student)

Q'4: Pe (id, name, S) nEid, Ename, Salary [GSolarg >10000 (Emplogee)]

id

201

name

P

S

20000

Eid

201

202

203

204

Employee

Ename Salary
P 20000
Q 5000
R 10000
P 7500

- ~
03

Operations
From Set Theory

3

Relational Algebra Operations from Set Theory

Type Compatibility of operands is required for the binary set

operation UNION U, (also for INTERSECTION N, and SET

DIFFERENCE -, see next slides)

R1(A1, A2, .., An) and R2(B1, B2, .., Bn) are type compatible if:
they have the same number of attributes, and

the domains of corresponding attributes are type compatible (i.e.
dom(A)=dom(Bi) for i=1, 2, .., n).

The resulting relation for RTUR2 (also for RINR2, or R1-R2, see

next slides) has the same attribute names as the first operand
relation R1 (by convention)

UNION, INTERSECTION, MINUS

Closedness property: the result of evaluating any
valid relational algebra expression is again a relation
(which does not have duplicate tuples).

Foru,n, -, the operands should be Type Compatible.

UNION

Binary operation, denoted by U
The result of RU S, is a relation that includes all tuples

that are eitherin Rorin Sorin both Rand S

Duplicate tuples are eliminated
The two operand relations R and S must be “type compatible”

(or UNION compatible)
R and S must have same number of attributes

Each pair of corresponding attributes must be type
compatible (have same or compatible domains)

UNION

To retrieve the social security numbers of all employees who either work
in department 5 (RESULT1 below) or directly supervise an employee who
works in department 5 (RESULT2 below)

EMPLOYEE

Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary | Super_ssn | Dno

b4
DEPARTMENT

Dname | Dnumber | Mgr_ssn | Mgr_start_date

E

UNION

To retrieve the social security numbers of all employees who either work
in department 5 (RESULT1 below) or directly supervise an employee who
works in department 5 (RESULT2 below)

EMPLOYEE

Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary | Super_ssn | Dno

b1
DEPARTMENT
I Dname | Dnumber | Mgr_ssn | Mgr_start_date |

i

We can use the UNION operation as follows:
DEP5 EMPS <« 6 p,,-s (EMPLOYEE)
RESULT1 < m o (DEP5_EMPS)
RESULT2 < P 5oy (TF 5 per ssf(DEP5_EMPS))
RESULT < RESULTT U RESULT2

The union operation produces the tuples that are in either RESULT1 or
RESULT2 or both

UNION

Results of Previous Question

Figure 6.3 RESULTH RESULT2 RESULT
Result of the
UNION operation Ssn Ssn Ssn
RESULT < RESULT1 123456789 333445555 123456789
U RESULTZ 333445555 888665555 333445555
666884444 666884444
453453453 453453453
888665555

EMPLOYEE

Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary | Super_ssn | Dno
t

DEPARTMENT _

Dname | Dnumber | Mgr_ssn | Mgr_start_date

i

INTERSECTION

INTERSECTION is denoted by n
The result of the operation R N S, is a relation that includes all

tuples that are in both R and S
The attribute names in the result will be the same as the

attribute names in R
The two operand relations R and S must be “type compatible”

INTERSECTION

The INTERSECTION operation is commutative, that is :

ANB=BnNA

The INTERSECTION is associative, that means it is applicable to
any number of relation.

AN(BNnC)=(ANnB)NC

In SQL, the operation INTERSECT is as same as INTERSECTION
operation here.

Moreover, In SQL there is multiset operation INTERSECT ALL.

SET DIFFERENCE (MINUS)

SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by -
The result of R - S, is a relation that includes all tuples that are in R

but notin S

The attribute names in the result will be the same as the
attribute names in R
The two operand relations R and S must be “type compatible”

MINUS

The SET DIFFERENCE operation is not commutative, that means:
A-B!=B-A

In SQL, the operation EXCEPT is as same as MINUS operation here.
Moreover, In SQL there is multiset operation EXCEPT ALL.

INTERSECTION can be formed using UNION and MINUS as
follows:

ANB=(AUB)-(A-B))-(B-A)

CARTESIAN PRODUCT/TIMES

In theory, the two relation can not have an attribute with the same
noun.

Hg, M Hg, =D

CARTESIAN PRODUCT

CARTESIAN (or CROSS) PRODUCT Operation

This operation is used to combine tuples from two relations in a combinatorial
fashion.

Denoted by R(AT, A2, ... An) x S(B1, B2, ..., Bm)
Result is a relation Q with degree n + m attributes:

The resulting relation state has one tuple for each combination of tuples—one
from R and one from S.

Hence, if R has ng tuples (denoted as |R| = ng), and S has ng tuples, then R x S
will have ng * ng tuples.

The two operands do NOT have to be “type compatible”

CARTESIAN PRODUCT

Generally, CROSS PRODUCT is not a meaningful operation

Can become meaningful when followed by other operations

Example (not meaningful):
FEMALE_EMPS « @ <, -(EMPLOYEE)

EMPNAMES <~ TT yave iuane. ssu (FEMALE_EMPS)
EMP_DEPENDENTS «— EMPNAMES x DEPENDENT

EMP_DEPENDENTS will contain every combination of EMPNAMES and
DEPENDENT

whether or not they are actually related

CARTESIAN PRODUCT

To keep only combinations where the DEPENDENT is related to the
EMPLOYEE, we add a SELECT operation as follows

Example (meaningful): Refetontl ntegity constaints csplayed on the COMPANY relational database schera
FEMALE_EMPS < SEXZ?F,(EMPLOYEE) Ern:;ZYiEMinn | Lname | Ssn | Bdate | Address | Sex | Salary | Super_ssn | Dno |
EMPNAMES « T r\ame (name ssy (FEMALE_EMPS) Ag |
EMP_DEPENDENTS <— EMPNAMES x DEPENDENT el

‘ Dname | Dnumber ‘ Mgr_ssn | Mgr_start_date|

ACTUAL_DEPS < @ <o cssn(EMP_DEPENDENTS) B
RESULT «= 7T ryame, Lname, perenpenT name (ACTUAL _DEPS) | Boumber | Dlocaton |
PROJECT
‘ Pname | Pnumber | Plocation ‘ Dnum

’@‘m‘Hours|
I

DEPENDENT

’ Essn | Dependent_name | Sex I Bdate | Relationship
1

CARTESIAN PRODUCT

To keep only combinations where the DEPENDENT is related to
the EMPLOYEE, we add a SELECT operation as follows

Example (meaningful):
FEMALE_EMPS « 0 ¢, .+(EMPLOYEE)

EMPNAMES < 7T e Lnave ssu (FEMALE_EMPS)
EMP_DEPENDENTS < EMPNAMES x DEPENDENT

ACTUAL_DEPS <« 0 «p-pesn(EMP_DEPENDENTS)
RESULT T FNAME, LNAME, DEPENDENT _NAME (ACTUAL_DEPS>

Write the following with MINUS, INTERSECT, UNION

R WHERE (C, AND C,)

R WHERE (C, OR C,)

R WHERE NOT C

Write the following with MINUS, INTERSECT, UNION

R WHERE (C, AND C))
(R WHERE C,) INTERSECT (R WHERE C))

R WHERE (C, OR C,)

(R WHERE C,) UNION (R WHERE C,)

R WHERE NOT C

R MINUS (R WHERE C)

- ~
04

Binary Relational
Operations

3

JOIN

JOIN Operation (denoted by)

The sequence of CARTESIAN PRODECT followed by SELECT is used
quite commonly to identify and select related tuples from two relations

A special operation, called JOIN combines this sequence into a single
operation

This operation is very important for any relational database with more
than a single relation, because it allows us combine related tuples from
various relations

The general form of a join operation on two relations R(A1, A2, ..., An)
and S(B1, B2, ..., Bm)is:

R X <join condition>S
where R and S can be any relations that result from general relational algebra
EXPIressions.

JOIN

Example: Suppose that we want to retrieve the name of
the manager of each department.

To get the manager’s name, we need to combine each DEPARTMENT tuple with
the EMPLOYEE tuple whose SSN value matches the MGRSSN value in the
department tuple.

We do this by using the join M gndition OPeration.
DEPT_MGR « DEPARTMENT N, -reonessy EMPLOYEE

MGRSSN=SSN is the join condition

Combines each department record with the employee who manages the
department

The join condition can also be specified as DEPARTMENT.MGRSSN=EMPLOYEE.SSN

O Give full details of producer-piece pairs from a citu.

S (S#, SNAME, STATUS, CITY) P(P# ..., W, CITY)
S1 Cl Pl 5 Cl
S2 C2 P2 6 C2
S3 3 3 + Cl
S4 C4 P4 7 C4
Rl =S X s cITY=P.PCITY (P RENAME CITY AS PCITY) S5 C5 P5 10 C5
S6 C6

R, (8%, ..., CITY, P#, ..., W, PCITY)

S1 Cl Pl 5 Cl
S1 Cl P3 4 Cl
S2 c2 P2 6 C2
83 Not jomnable

S4 C4 P4 7 C4
S5 C5 P5 10 C5
86 Not joinable

Some properties of JOIN

Consider the following JOIN operation:

R(AT, A2, ..., An) Mg 4;=s5;S(B1, B2, ..., Bm)
Result is a relation Q with degree n + m attributes:
Q(A1, A2, ..., An,B1, B2, ... Bm),in that order.
The resulting relation state has one tuple for each combination of tuples—r from R
and s from S, but only if they satisty the join condition r[Ai]=s[Bj]
Hence, if R has ngi tuples, and S has ng tuples, then the join result will generally have
less than ngp X ng tuples.
Only related tuples (based on the join condition) will appear in the result. In this

example:
P RA = S.B

N/

Must be the same domain and not the same name.

Theta-JOIN

The general case of JOIN operation is called a Theta-join:
R DX theta S

The join condition is called theta.

Theta can be any general boolean expression on the attributes of R
and S; for example:

R.Ai < S.Bj AND (R.Ak = S.BI OR RAp < S.Bq)

Most join conditions involve one or more equality conditions

“AND”ed together; for example: EQUI-JOIN =
R.Ai = S.Bj AND R. Ak = S.BI AND R.Ap = S.Bg NOT EQUI-JOIN =
Operations in join condition include | LESS THAN-JOIN <

LESS EQUI-JOIN <
GREATER THAN-JOIN >
GREATER EQUI-JOIN >

EQUUOIN

The most common use of join involves join conditions with only
equality comparisons.

Such a join, where the only comparison operator used is =, is
called an EQUIJOIN.

In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names
need not be identical) that have identical values in every tuple.

NATURAL JOIN

NATURAL JOIN Operation

Another variation of JOIN called NATURAL JOIN — denoted by * or) — was

created to get rid of the second (superfluous) attribute in an EQUIJOIN condition.
Because one of each pair of attributes with identical values is superfluous

The standard definition of natural join requires that the two join attributes, or each
pair of corresponding join attributes, have the same name in both relations.

If this is not the case, a renaming operation is applied first.

DEPARTMENT

Mgr_start_date

DEPT_LOCATI

Dnumber

NATURAL JOIN Tj

Example: To apply a natural join on the DNUMBER attributes
of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:

DEPT_LOCS « DEPARTMENT * DEPT_LOCATIONS
Only attribute with the same name is DNUMBER.

An implicit join condition is created based on this attribute:
DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

Another example: Q « R(A,B,C,D) * S(C,D,E)

The implicit join condition includes each pair of attributes with the same name,

“AND”ed together:
RC=S5.C AND RD=SD
Result keeps only one attribute of each such pair:

Q(A,B.C,D,E)

DIVISION

Division operator A + B or A/B can be applied if and

on | U If: A proper subset of a set A is a subset of A that is not equal to A.
Attributes of B is proper subset of Attributes of A.
The relation returned by division operator will have attributes
= (All attributes of A - All Attributes of B)
X Y

The relation returned by — S ——
division operator will return {Rl (s Agy s A By By, - By
those tuples from relation A

which are associated to
every B’s tuple. Rs(X) = Ry (XY) = Rp(Y) —> Hg, € Hp,

R,(B,,B,,...,B.)

DIVISION

The division operation is applied to two relations R(Z) + S(X), where X
subset Z. Let Y =Z - X (and hence Z =X U Y); that is, let Y be the set of
attributes of R that are not attributes of S.

The result of DIVISION is a relation T(Y) that includes a tuple tif tuples tg
appear in R with tz [Y] = t, and with t, [X] = t, for every tuple t,in S.

For a tuple t to appear in the result T of the DIVISION, the values in t must
appear in R in combination with every tuple in S.
FOI’ R3 — R1 - R2

| card(Ry) |

0< card(Ry) <
" card (R»)

Example of DIVISION

(a) (b)
SSN_PNOS SMITH_PNOS R s
Essn Pno Pno A B A

123456789 1 1 al | b1 ai
123456789 2 2 a2 | b1 a2
666884444 | 3 a3 | b1 a3
453453453 1 a4 | b1
453453453 2 SSNS al | b2 T
333445555 2 Ssn a3 | b2 B
333445555 3 123456789 a2 | b3 b1
333445555 | 10 453453453 a3 | b3 b4
333445555 | 20 a4 | b3
999887777 | 30 al | b4
909887777 | 10 a2 | b4
987987987 | 10 a3 | b4

987987987 30
987654321 30
987654321 20
888665555 20

Figure 6.8
The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T < R+ S.

DIVISION

Candidate key of R; = Ry +~ R,:
N If CK of Rlisin R3 header, then CK(R3)=C.K(R1)

a|b|c|jd|e + d]|e = a b c
1| 1| 4] 1]2 1| 2 1 1 4
1| 2] 4] 1]2 1 2 4
2 | 1[5 1]|2 2 1 5
30241 |2 3 2 4
4046|211

2) If CK of R1is not in R3 header, then CK(R3)=all keys

a|b|c|d|e + dje = a | b | ¢
S| 6| 7|1 1 | 2 5 | 6 | 7
S |16 | 713 3| 4 6 | 4 | 5
8 | 2| 3|6 |7 S | 6 | 8
6 | 4 | 5 6 | 2 | 5
71 819 |1 6 | 8
6 | 4| 5|1
516 | 7| 8|9
516 | 8 1 | 2
S| 6| 8|34
6 | 2 | 5 (1] 2
6 | 2| 5|34
216 8|1 |2
2|1 6| 8 4

Operation

SELECT

PROIECT

THETA JOIN

EQUUCIN

NATURAL JOIN

UNION

INTERSECTION

DIFFERENCE

CARTESIAN
PRODUCT

DIVISION

Purpose

Selects all wuples that satisfy the selection condition
from a relation R.

Produces a new relation with only some of the
attributes of R, and removes duplicate tuples,

Produces all combinations of tuples from R, and R,
that satisfy the join condition.

Produces all the combinations of tuples from R, and
B, that satisfy a join condition with only equality
L'IIH'I'II'HlTi.M S,

Same as EQUUOIN except that the join attributes of R,
are not included in the resulting relation; if the join
attributes have the same names, they do not have to
be specified at all,

Produces a relation that includes all the tuples in R,
or B, or both B, and B, R, and B, must be union
compatible.

Produces a relation that includes all the tuples in both
R, and R;; R, and K, must be union compatible,

Produces a relation that includes all the tuples in
R, that are not in Ry R, and B, must be union
compatible.

Produces a relation that has the attributes of B, and
B, and includes as tuples all possible combinations
of tuples from B, and R..

Produces a relation R(X) that includes all tuples [X]
in B,(£) that appear in R, in combination with every
tuple from R,(Y), where Z=X 1w 1,

HNotation

a, selection condisomn ! R-I
K < anuribuse lias L)
A O —
Roba_ o ians R

OR B s

R,

joan attribubes. | =],

HI'? o i il iERGE
OR R*,.

<jodn attributes 2>

OR R, * R,
R, UR,

R, AR,

R, - R,

R, % R,

R,(Z) + Ry(Y)

Recap of Relational Algebra Operations

Write the Optimal Relational Algebra:

S& Sname
S1 Snl
S2 Sn2
S3 Sn3

FE

Pname

P3
Pl
p2

Pnl
Pn2

s¢# | p# | Qry
S1 Pl 10
S1 P2 20
S2 Pl 30

S# of suppliers who have produced at least one product
SO|UTIOH TIg (SP)

Specifications of suppliers who have produced at least one product
Solution! g4 gpame ciry (S SP) The optimal version is: g » (H Q4 Sp)

S# of suppliers who have produced all products

Solution: Mgz px (SP)+Ipx (P)

05

Additional Relational
Operations

% f

Aggregate Functions and Grouping

A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate
functions on collections of values from the database.

Examples of such functions include retrieving the average or
total salary of all employees or the total number of employee
tuples.

These functions are used in simple statistical queries that summarize information
from the database tuples.

Common functions applied to collections of numeric values
include
SUM, AVERAGE, MAXIMUM, and MINIMUM.

The COUNT function is used for counting tuples or values.

Agdregdate Function Operation

Use of the Aggregate Functional operation F

Fuax salary (EMPLOYEE) retrieves the maximum salary value from the
EMPLOYEE relation

Fuin salary (EMPLOYEE) retrieves the minimum Salary value from the
EMPLOYEE relation

Fsum salary (EMPLOYEE) retrieves the sum of the Salary from the EMPLOYEE
relation

F coUNT sSN, AVERAGE salary (EMPLOYEE) computes the count (number) of
employees and their average salary

Note: count just counts the number of rows, without removing duplicates

Using Grouping with Aggdregation

The previous examples all summarized one or more

attributes for a set of tuples
Maximum Salary or Count (number of) Ssn

Grouping can be combined with Aggregate Functions

Example: For each department, retrieve the DNO,
COUNT SSN, and AVERAGE SALARY

EMPLOYEE
Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary | Super_ssn | Dno

4
DEPARTMENT _
Dname | Dnumber | Mgr_ssn | Mgr_start_date

i

Using Grouping with Aggdregation

A variation of aggregate operation F allows this:

Grouping attribute placed to left of symbol
Aggregate functions to right of symbol

DNO TCOUNT SSN, AVERAGE Salary <EM PLOYEE>

Above operation groups employees by DNO
(department number) and computes the count of
employees and average salary per department

OUTER JOIN

The OUTER JOIN Operation

In NATURAL JOIN and EQUIJOIN, tuples without a matching (or related) tuple
are eliminated from the join result

Tuples with null in the join attributes are also eliminated

This amounts to loss of information.

A set of operations, called OUTER joins, can be used when we want to keep all
the tuples in R, or all those in S, or all those in both relations in the result of the
join, regardless of whether or not they have matching tuples in the other

relation.

LEFT & Right OUTER JOIN

The left outer join operation keeps every tuple in the
first or left relation R in R IXS; if no matching tuple is

found in S, then the attributes of S in the join result are
filled or “padded” with null values.

A similar operation, right outer join, keeps every tuple
iNn the second or right relation S in the result of RIXC S

A third operation, full outer join, denoted by 1<
keeps all tuples in both the left and the right relations

when no matching tuples are found, padding them with
null values as needed.

<
O
-
2%
LLl
o
-
O
+
o =
20
8%
w0
j—
LL
LL
—

L

o

L

NULL | NULL

b

d

o

L

Q|

Ly

o

b

|

-
D

Example
=Rl

v

LEFT & Right OUTER JOIN

For R3=R; =Ry with £ same columns:
Degree: deg(R3) =(deg(R) +deg(R;))-k
Cardinality: card(R;» R5)< card(Ry) <card(Ry)xcard(R»)

LEFT SEMI-JOIN

A Left Semi-join returns rows from the left table for which there
are corresponding matching rows in the right table.

Unlike regular joins which include the matching rows from both
tables, a left semi-join only includes columns from the left
table in the result.

Output:

E X O m p | e : Customers table: Orders Table

Customer_ID Customer_Name Customer_ID Order_ID Order_Name

Customer_ID Customer_Name

. 01 Alice
01 Alice 02 101 Stationery

02 Bob 02 Bob
01 102 Books

03 Charlie 04 David

04 103 Pens
04 David

RIGHT SEMI-JOIN

A Right Semi-join returns rows from the right table for which
there are corresponding matching rows in the left table.

Example:
a b “ b c d = b c d
I | 2 2> [5 |1 2 |5 |1
3| 4 6 | 3 | 2 2 | 8 | 3
5 1 6 2 | 8 | 3 6 | 3 | 2
7 | 2 9o | 6 | 7
7 4 | 5

SEMI-JOIN

R{ XRy; #Ry X R4

R{ X Ry, #Ry X R4

IfHR]_ :HRZ then R1>4R2= R1 D<R2= R1 by Rz = R1 ﬂRz

ANTI-JOIN

RD>S
't is Exactly the opposite to semi-join.
An Anti-join returns rows from the left table for which

there are no corresponding matching rows in the right

tOble Output:
Example:

Customer_ID Customer_Name

03 Charlie

SEMI-MINUS

R; =R; SEMIMINUS R, = R; MINUS (R; SEMIJOIN R,)
Hgr, = Hg,

Examples of Queries in Relational Algebra

Retrieve the name and
address of all employees
who work for the ‘Research’
department.

Retrieve the names of
employees who have no
dependents.

EMPLOYEE

Fname | Minit | Lname | Ssn | Bdate | Address | Sex | Salary | Super_ssn | Dno
DEPARTMENT TT

Dname | Dnumber | Mgr_ssn | Mgr_start_date

—

DEPT_LOCATIONS

Dnumber

Dlocation

PROJECT

Pname

Pnumber

Plocation

Dnum

L

WORKS_ON

Essn

Pno

Hours

DEPENDENT

Essn

Dependent_name | Sex

Bdate

Relationship

Examples of Queries in Relational Algebra

Retrieve the name and address of all employees who

[4 J
work for the ‘Research’ department.
| Fname I Minit ‘ Lnamel Ssn I Bdate | Address | Sex ‘ Salary | Superﬁssnl Dno |
TIIT* I
DEPARTMENT
| Dname I Dnumber { Mgr_ssn [Mgr_starl_date}
A
DEPT_LOCATIONS
| Dnumber ‘ Dlocation ‘
PROJECT
|Pname I Pnumber [Plocation I Dnum
A [
WORKS_ON
|% | Pno | Hours ‘
DEPENDENT
RESEARCH_DEPT ¢ G DNAME="Research’ (DEPARTMENT) —————

RESEARCH EMPS < (RESEARCH DEPT |><[D_W_\[BER= onroesEEMPLOYEE
RESULT <« TU FNAME, LNAME, ADDRESS (RESEARCH EMPS)

Examples of Queries in Relational Algebra

Ret ri eve th e n O m eS Of e m p | O g ees ‘Elf\jnz:;uc;vElEMinit | Lname ‘fLSTnf' Bdate | Address | Sex | Salary | Supelr_ssn | Dno |

DEPARTMENT

who have no dependents. e 0

DEPT_LOCATIONS
‘ Dnumber | Dlocation ‘

PROJECT

‘ Pname I Pnumber | Plocation | Dnum
A

WORKS_ON

‘@ | Pno | Hours |
|

DEPENDENT

‘ @ ‘ Dependent_name I Sex ‘ Bdate ‘ Relationship
L

ALL EMPS <« Tt ssn(EMPLOYEE)

EMPS_WITH DEPS(SSN) < Tt essx(DEPENDENT)
EMPS_WITHOUT DEPS « (ALL_EMPS - EMPS_WITH_DEPS)

RESULT « Tt LNAME, FNAME (EMPS WITHOUT DEPS * EMPLOYEE)

- .

05

Complete Set of
Relational Operations

% f

Complete Set of Relational Operations

The set of operations including SELECT o, PROJECT 7,
UNION U, DIFFERENCE — , RENAME p, and CARTESIAN

PRODUCT x is called a complete set because any

other relational algebra expression can be expressed
by a combination of these five operations.
For example:

RNS=RUS)—((R=SYU(S—-R)=R—(R-Y5)

R X ongition S = Ocondition (R X S)

DIVISION

Division can be expressed in terms of Cross Product , Set
Difference and Projection. How??

DIVISION

Division can be expressed in terms of Cross Product , Set
Difference and Projection. How??

Let R(A,B) and S(A), we want to do R+S.

take T; = mg(R) using project operator
toke T, = § X T, (cross product)

take T3 =T, — R

take T, = m(T3) using project operator
Result =T, — T,

Thus, we implemented Division operator using Project, Difference and Cross product which
are all present in Minimal set of operators

NATURAL JOIN

Natural join can be expressed in terms of Cross Product ,
Select and Projection. How??

Example

a b b c d
1 2 2 5 1 _ _ H . _ H .]
3] 4 6 | 3| 2 I=s=UlRUS (”1‘.L‘:-=e bl %5 ')— a.s.b.c.d (51.?J=+.L':- TRl)
5 6 2 3 3
7 2 9 6 7

r 4 | 5

5 a b « b c d = a | b | sb | ¢ d a s.b C d

a b - d 1 2 2 5 1 1 2 2 5 1 1 2 5 1
1 2 5 1 3 4 6 3 2 1 2 2 8 3 1 2 8 3
1 b] 3 5 6 2 g8 | 3 5 6| 6| 3| 2 S 6 3 2
5 6) 5 7 2 9 6 7 7 2 2 5 1 7 2 5 1
: 2 70 4| s 70 2] 2] 8| 3 7 2 8 3
7 2 5 1
7 2] 3 cross product, select & project

Natural Join

LEFT-OUTER JOIN

Left outer join can be expressed in terms of complete set.

How??

Example
a b b c D
1 2 2 5 1
304 6 | 3| 2
5 6 2 8 3
7 2 6 7

7 | 4] s

a | b d L= = (H a,s.b,c,d (‘51‘.b = sb(r%s)))U ((1 1L, 10 (Ur.b = b (r%s)))x {NULL. NULL})
1 2 1
1 2 3
51 6 3 2
7 2 5 1
7 2 8 3
3 4 | NULL | NULL

Left Outer Join

Maryam Ramezani

Any Question?

Database Design

95

	Slide 1
	Slide 2
	Slide 3: Introduction
	Slide 4: Review-Formal Definitions
	Slide 5: Review-Formal Definitions
	Slide 6: Formal Definitions - Summary
	Slide 7: Formal Definitions - Example
	Slide 8: Definition Summary
	Slide 9: Example – A relation STUDENT
	Slide 10: Characteristics Of Relations
	Slide 11: Characteristics Of Relations
	Slide 12: Characteristics Of Relations
	Slide 13: Review: Key Constraints
	Slide 14: Review: Entity Integrity
	Slide 15: Relational Operations Overview
	Slide 16: Example
	Slide 17
	Slide 18: SELECT
	Slide 19: SELECT
	Slide 20: SELECT
	Slide 21: SELECT
	Slide 22: SELECT
	Slide 23: PROJECT
	Slide 24: PROJECT
	Slide 25: PROJECT
	Slide 26: PROJECT
	Slide 27: PROJECT
	Slide 28: PROJECT
	Slide 29: EXTENDED PROJECT
	Slide 30: Relational Algebra Expressions
	Slide 31: Single expression versus sequence of relational operations
	Slide 32: RENAME
	Slide 33: RENAME
	Slide 34: RENAME
	Slide 35: Database State for COMPANY
	Slide 36: Examples
	Slide 37: Example
	Slide 38
	Slide 39: Relational Algebra Operations from Set Theory
	Slide 40: UNION, INTERSECTION, MINUS
	Slide 41: UNION
	Slide 42: UNION
	Slide 43: UNION
	Slide 44: UNION
	Slide 45: UNION
	Slide 46: INTERSECTION
	Slide 47: INTERSECTION
	Slide 48: SET DIFFERENCE (MINUS)
	Slide 49: MINUS
	Slide 50: CARTESIAN PRODUCT/TIMES
	Slide 51: CARTESIAN PRODUCT
	Slide 52: CARTESIAN PRODUCT
	Slide 53: CARTESIAN PRODUCT
	Slide 54: CARTESIAN PRODUCT
	Slide 55: Example
	Slide 56: Example
	Slide 57
	Slide 58: JOIN
	Slide 59: JOIN
	Slide 60: Example
	Slide 61: Some properties of JOIN
	Slide 62: Theta-JOIN
	Slide 63: EQUIJOIN
	Slide 64: NATURAL JOIN
	Slide 65: NATURAL JOIN
	Slide 66: DIVISION
	Slide 67: DIVISION
	Slide 68: Example of DIVISION
	Slide 69: DIVISION
	Slide 70: Recap of Relational Algebra Operations
	Slide 71: Example
	Slide 72
	Slide 73: Aggregate Functions and Grouping
	Slide 74: Aggregate Function Operation
	Slide 75: Using Grouping with Aggregation
	Slide 76: Using Grouping with Aggregation
	Slide 77: OUTER JOIN
	Slide 78: LEFT & Right OUTER JOIN
	Slide 79: LEFT & Right OUTER JOIN
	Slide 80: LEFT & Right OUTER JOIN
	Slide 81: LEFT SEMI-JOIN
	Slide 82: RIGHT SEMI-JOIN
	Slide 83: SEMI-JOIN
	Slide 84: ANTI-JOIN
	Slide 85: SEMI-MINUS
	Slide 86: Examples of Queries in Relational Algebra
	Slide 87: Examples of Queries in Relational Algebra
	Slide 88: Examples of Queries in Relational Algebra
	Slide 89
	Slide 90: Complete Set of Relational Operations
	Slide 91: DIVISION
	Slide 92: DIVISION
	Slide 93: NATURAL JOIN
	Slide 94: LEFT-OUTER JOIN
	Slide 95

