
CE384: Database Design
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

Relational Algebra

Relational
Formal Definitions

01

Maryam Ramezani Database Design 2

 The relational algebra consists of a set of operations that take one
or two relations as input and produce a new relation as their result.

Maryam Ramezani Database Design

Unary
• select
• project
• rename

Binary

• union
• Cartesian

product
• set difference

Relational Operations

3

Maryam Ramezani Database Design

 A tuple is an ordered set of values (enclosed in angled brackets
 ‘< … >’)
 Each value is derived from an appropriate domain.
 A row in the CUSTOMER relation is a 4-tuple and would consist of four values,

for example:
 CUSTOMER (Cust-id, Cust-name, Address, Phone#)
▪ CUSTOMER is the relation name
▪ Defined over the four attributes from domains: Cust-id: customer id values,

Cust-name: customer name values, Address: address values, Phone#:
phone values

▪ <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
▪ This is called a 4-tuple as it has 4 values
▪ A tuple (row) in the CUSTOMER relation.

4

Maryam Ramezani Database Design

 A relation R is a set of such tuples (rows) having:
▪ Heading: HR or R(H) e.g: For R(A1,…,Am) R(H)={A1,…,Am}
▪ R(H) is constant over time.
▪ Change in R(H) makes a new relation.

▪ Body: r(R) set of tuples
▪ It is changeable over the time.
▪ Relation state r(R): a specific state (or "value" or “population”) of relation R – this is a

set of tuples (rows)
▪ r(R) = {t1, t2, …, tn} where each ti is an n-tuple
▪ ti = <v1, v2, …, vn> where each vj element-of dom(Aj)

 Degree: Number of heading.
 Cardinality: Number of rows.
 Think about a relation which the number of domains is smaller than degree?

▪ Emp(ID,Name,ManagerID): the EmpID and ManagerID are from the same domain of EmpID.

5

Maryam Ramezani Database Design

 Formally,
▪ Given R(A1, A2,, An)
▪ r(R)  dom (A1) X dom (A2) XX dom(An)

 R(A1, A2, …, An) is the schema of the relation
 R is the name of the relation
 A1, A2, …, An are the attributes of the relation

6

Maryam Ramezani Database Design

 Let R(A1, A2) be a relation schema:
▪ Let dom(A1) = {0,1}
▪ Let dom(A2) = {a,b,c}

 Then: dom(A1) X dom(A2) is:
 all possible combinations: {<0,a> , <0,b> , <0,c>, <1,a>, <1,b>, <1,c> }

 The relation state r(R)  dom(A1) X dom(A2)
▪ For example: r(R) could be {<0,a> , <0,b> , <1,c> }
▪ This is one possible state (or “population” or “extension”) r of the relation R,

defined over A1 and A2.
▪ It has three 2-tuples: <0,a> , <0,b> , <1,c>

7

Maryam Ramezani Database Design

Informal Terms Formal Terms

Table Relation

Column Header Attribute

All possible Column Values Domain

Row Tuple

8

Maryam Ramezani Database Design 9

 Ordering of tuples in a relation r(R):
▪ The tuples are not considered to be ordered (because it is a

set), even though they appear to be in the tabular form
 Ordering of attributes in a relation schema R (and of values

within each tuple):
▪ We will consider the attributes in R(A1, A2, ..., An) and the

values in t=<v1, v2, ..., vn> to be ordered .
▪ (However, a more general alternative definition of relation does not require

this ordering).
 Because relation is a set, it does not have duplicated tuples.
 In theoretical, degree of a relation is ≥ 0

Maryam Ramezani Database Design 10

 Values in a tuple:
▪ All values are considered atomic (indivisible).
▪ Hence, composite and multivalued attributes are not allowed.

▪ Each value in a tuple must be from the domain of the attribute for that column
▪ If tuple t = <v1, v2, …, vn> is a tuple (row) in the relation state r of R(A1, A2, …,

An)
▪ Then each vi must be a value from dom(Ai)

▪ A special null value is used to represent values that are unknown or
inapplicable to certain tuples.

 If m=degree of relation and n=number of domains then 𝑚 ≥ 𝑛

Maryam Ramezani Database Design 11

 Notation:
▪ We refer to component values of a tuple t by:
▪ t[Ai] or t.Ai
▪ This is the value vi of attribute Ai for tuple t

▪ Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing
the values of attributes Au, Av, ..., Aw, respectively in t

Maryam Ramezani Database Design 12

 Superkey of R:
▪ Is a set of attributes SK of R with the following condition:
▪ No two tuples in any valid relation state r(R) will have the same value

for SK
▪ That is, for any distinct tuples t1 and t2 in r(R), t1[SK]  t2[SK]
▪ This condition must hold in any valid state r(R)

 Key of R Candidate key (CK):
▪ A "minimal" superkey
▪ That is, a key is a superkey K such that removal of any attribute

from K results in a set of attributes that is not a superkey (does
not possess the superkey uniqueness property)

Maryam Ramezani Database Design 13

 Entity Integrity:
▪ The Primary Key attributes PK of each relation schema R

in S cannot have null values in any tuple of r(R).
▪ This is because primary key values are used to identify the individual tuples.
▪ t[PK]  null for any tuple t in r(R)
▪ If PK has several attributes, null is not allowed in any of these attributes

▪ Note: Other attributes of R may be constrained to
disallow null values, even though they are not members
of the primary key.

▪ If a primary key is too long, the surrogate key is used.
Maryam Ramezani Database Design 14

 Relational Algebra consists of several groups of operations

▪ Unary Relational Operations
▪ SELECT (symbol: 𝜎(sigma))
▪ PROJECT (symbol: 𝜋(pi))
▪ RENAME (symbol: 𝜌 (rho))

▪ Relational Algebra Operations From Set Theory
▪ UNION (∪), INTERSECTION (∩), DIFFERENCE (or MINUS, –)
▪ CARTESIAN PRODUCT (x)

▪ Binary Relational Operations
▪ JOIN (several variations of JOIN exist)
▪ DIVISION

▪ Additional Relational Operations
▪ OUTER JOINS, OUTER UNION
▪ AGGREGATE FUNCTIONS (These compute summary of information: for

example, SUM, COUNT, AVG, MIN, MAX)
Maryam Ramezani Database Design 15

Maryam Ramezani Database Design 16

Unary Operations

02

Maryam Ramezani Database Design 17

 The SELECT operation (denoted by 𝝈 (sigma)) is used to select a subset
of the tuples from a relation based on a selection condition.

▪ The selection condition acts as a filter
▪ Keeps only those tuples that satisfy the qualifying condition
▪ Tuples satisfying the condition are selected whereas the other tuples

are discarded (filtered out)
▪ We allow comparisons using =, ≠, <, ≤, >, and ≥ in the selection predicate.
▪ Combine several predicates into a larger predicate by using the

connectives and (∧), or (∨), and not (.).

Maryam Ramezani Database Design 18

Maryam Ramezani Database Design

 In general, the select operation is denoted by
 𝜎 <selection condition>(R) where
▪ the symbol 𝜎 (sigma) is used to denote the select operator
▪ the selection condition is a Boolean (conditional) expression

specified on the attributes of relation R
▪ tuples that make the condition true are selected
▪ appear in the result of the operation

▪ tuples that make the condition false are filtered out
▪ discarded from the result of the operation

19

 Example:
▪ .

▪ Find all instructors with salary greater than $90,000

▪ Find the instructors in Physics with a salary greater than $90,000

▪ Consider the relation department. Find all departments whose name
is the same as their building name.

Maryam Ramezani Database Design 20

Maryam Ramezani Database Design

 SELECT Operation Properties

▪ The SELECT operation 𝝈 <selection condition>(R) produces a relation S that has
 the same schema (same attributes) as R
▪ SELECT𝜎 is commutative:
▪ 𝜎 <condition1>(𝜎 < condition2> (R)) =𝜎<condition2> (𝜎 < condition1> (R))
▪ Because of commutativity property, a cascade (sequence) of SELECT operations

may be applied in any order:
▪ 𝜎 <cond1>(𝜎 <cond2> (𝜎 <cond3> (R)) = 𝜎 <cond2> (𝜎 <cond3> (𝜎 <cond1> (R)))

▪ A cascade of SELECT operations may be replaced by a single selection with a
conjunction of all the conditions:
▪ 𝜎 <cond1>(𝜎 < cond2> (𝜎 <cond3>(R)) =𝜎<cond1> AND < cond2> AND < cond3>(R)))

 The cardinality in the result of a SELECT is:
▪ less than (or equal to) the number of tuples in the input relation R: 0 ≤ |σ c (

R)| ≤ |R|

 The degree of resulting relation from a Selection operation is:
▪ same as the degree of the Relation given.

21

 If R′ = σc R then what the candidate key of R′?
▪ CKR′ ⊆ CKR

 Equivalent expressions
▪ commutative σc1 σc2 R = σc2 σc1 R = σc1∧𝑐2(R))

Maryam Ramezani Database Design 22

Maryam Ramezani Database Design

 PROJECT Operation is denoted by 𝝅(pi)
 This operation keeps certain columns (attributes) from

a relation and discards the other columns.
▪ PROJECT creates a vertical partitioning
▪ The list of specified columns (attributes) is kept in each tuple
▪ The other attributes in each tuple are discarded

 Example: To list each employee’s first and last name
and salary, the following is used:

𝜋LNAME, FNAME,SALARY (
𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸)

23

Maryam Ramezani Database Design

 The general form of the project operation is:
π <attribute list>(R)

▪ π (pi) is the symbol used to represent the project operation
▪ <attribute list> is the desired list of attributes from relation R.

 The project operation removes any duplicate

tuples

▪ This is because the result of the project operation must be a
set of tuples.
▪Mathematical sets do not allow duplicate elements.

24

 Example
▪ 1)

▪ 2)

▪ 3) Find the names of all instructors in the Physics department.

Maryam Ramezani Database Design 25

Maryam Ramezani Database Design

 Q1: πClass, Dept(Faculty)

 Q2: πPosition(Faculty)

 Q3: πClass(Faculty)

Relation of this table!

26

 PROJECT Operation Properties
▪ The cardinality in the result of projection π <list>(R) is always less or

equal to the number of tuples in R 𝟏 ≤ |𝝅𝑨 𝑹 | ≤ |𝑹|

▪ If the list of attributes includes a key of R, then the number of tuples
in the result of PROJECT is equal to the number of tuples in R

▪ The degree of resulting relation from a Project operation is equal to the
number of attribute in the attribute list ‘A’.

▪ In SQL, SELECT DISTINCT query is exactly as same as PROJECT here.

Maryam Ramezani Database Design 27

 PROJECT Operation Properties
▪ PROJECT is not commutative
▪ πAttribute List 1(πAttribute List2(R)) != πAttribute List 2 (πAttribute List1(R))

▪ π <list1> (π <list2> (R)) = π <list1> (R)
▪As long as <list2> contains the attributes in <list1>.
▪Means only if Attribute List 1 is a subset of Attribute List 2.

Maryam Ramezani Database Design 28

Maryam Ramezani Database Design

 Π STID, COID, 1.2∗GRADE RENAME AS G STCOT

29

 We may want to apply several relational algebra
operations one after the other
▪ Either we can write the operations as a single relational algebra

expression by nesting the operations, or
▪ We can apply one operation at a time and create intermediate result

relations.
 In the latter case, we must give names to the relations that

hold the intermediate results.

Maryam Ramezani Database Design 30

 To retrieve the first name, last name, and salary of all
employees who work in department number 5, we must apply
a select and a project operation

 We can write a single relational algebra expression as follows:
▪ 𝝅FNAME, LNAME, SALARY(𝝈 DNO=5(EMPLOYEE))

 OR We can explicitly show the sequence of operations, giving a
name to each intermediate relation:
▪ DEP5_EMPS  𝝈 DNO=5(EMPLOYEE)
▪ RESULT  𝝅 FNAME, LNAME, SALARY (DEP5_EMPS)

Maryam Ramezani Database Design 31

 The RENAME operator is denoted by  (rho)
 In some cases, we may want to rename the attributes

of a relation or the relation name or both
▪ Useful when a query requires multiple operations
▪ Necessary in some cases (see JOIN operation later)

Maryam Ramezani Database Design 32

 The general RENAME operation  can be expressed by
any of the following forms:
▪ S(R) changes:
▪ the relation name only to S

▪ (B1, B2, …, Bn)(R) changes:
▪ the column (attribute) names only to B1, B1, …..Bn

▪ S (B1, B2, …, Bn)(R) changes both:
▪ the relation name to S, and
▪ the column (attribute) names to B1, B1, …..Bn

Maryam Ramezani Database Design 33

 For convenience, we also use a shorthand for
renaming attributes in an intermediate relation:
o If we write:
▪ RESULT  𝛑 FNAME, LNAME, SALARY (DEP5_EMPS)
▪ RESULT will have the same attribute names as DEP5_EMPS

o If we write:
▪ RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO) (F, M, L, S, B, A, SX, SAL, SU, DNO)

(DEP5_EMPS)

▪ The 10 attributes of DEP5_EMPS are renamed to F, M, L, S, B, A, SX,
SAL, SU, DNO, respectively.

Maryam Ramezani Database Design 34

 All examples discussed below refer to the COMPANY database shown here.

Maryam Ramezani Database Design 35

 Query to rename the relation Student as Male Student and the
attributes of Student RollNo and SName as (Sno, Name) with
selecting some tuples with “Condition”.
▪ ρ MaleStudent(Sno, Name) πRollNo, SName(σCondition(Student))

 Query to rename the attributes Name, Age of table Department
to A,B.
▪ ρ (A, B) (πName, Age Department)

 Query to rename the table name Project to Pro and its attributes
to P, Q, R.
▪ ρ Pro(P, Q, R) (Project)

 Query to rename the first attribute of the table Student with
attributes A, B, C to P.
▪ ρ (P, B, C) (Student)

Maryam Ramezani Database Design 36

 Q.4: ρ E (id, name, S) πEid, Ename, Salary [σSalary >10000 (Employee)]

Maryam Ramezani Database Design 37

Operations
From Set Theory

03

Maryam Ramezani Database Design 38

 Type Compatibility of operands is required for the binary set
operation UNION ∪, (also for INTERSECTION ∩, and SET
DIFFERENCE –, see next slides)

 R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type compatible if:
▪ they have the same number of attributes, and
▪ the domains of corresponding attributes are type compatible (i.e.

dom(Ai)=dom(Bi) for i=1, 2, ..., n).
 The resulting relation for R1∪R2 (also for R1∩R2, or R1–R2, see

next slides) has the same attribute names as the first operand
relation R1 (by convention)

Maryam Ramezani Database Design 39

 Closedness property: the result of evaluating any
valid relational algebra expression is again a relation
(which does not have duplicate tuples).

 For  ,  , -, the operands should be Type Compatible.

HR1 = HR2
R3 = R1 op R2 𝒐𝒑 ∈ ∪,∩, , −

HR3 = HR1 = HR2

Maryam Ramezani Database Design 40

 Binary operation, denoted by ∪
 The result of R ∪ S, is a relation that includes all tuples

that are either in R or in S or in both R and S
 Duplicate tuples are eliminated
 The two operand relations R and S must be “type compatible”

(or UNION compatible)
▪ R and S must have same number of attributes
▪ Each pair of corresponding attributes must be type

compatible (have same or compatible domains)
 In SQL, the operation UNION is as same as UNION operation

here.
 Moreover, In SQL there is multiset operation UNION ALL.

Maryam Ramezani Database Design 41

Maryam Ramezani Database Design

▪ To retrieve the social security numbers of all employees who either work
in department 5 (RESULT1 below) or directly supervise an employee who
works in department 5 (RESULT2 below)

42

Maryam Ramezani Database Design

▪ To retrieve the social security numbers of all employees who either work
in department 5 (RESULT1 below) or directly supervise an employee who
works in department 5 (RESULT2 below)

We can use the UNION operation as follows:
DEP5_EMPS  𝝈 Dno=5 (EMPLOYEE)

RESULT1  𝝅 Ssn(DEP5_EMPS)
RESULT2  ρ SSN (𝝅 Super_ssn(DEP5_EMPS))

RESULT  RESULT1 ∪ RESULT2
The union operation produces the tuples that are in either RESULT1 or
RESULT2 or both

43

▪ Results of Previous Question

Maryam Ramezani Database Design 44

Maryam Ramezani Database Design

▪ To retrieve the social security numbers of all employees who either work
in department 5 or employee whose directly supervise works in
department 5

45

 INTERSECTION is denoted by ∩
 The result of the operation R ∩ S, is a relation that includes all

tuples that are in both R and S
▪ The attribute names in the result will be the same as the

attribute names in R
 The two operand relations R and S must be “type compatible”

Maryam Ramezani Database Design 46

 The INTERSECTION operation is commutative, that is :

A ∩ B = B ∩ A

 The INTERSECTION is associative, that means it is applicable to
any number of relation.

A ∩ (B ∩ C) = (A ∩ B) ∩ C

 In SQL, the operation INTERSECT is as same as INTERSECTION
operation here.

 Moreover, In SQL there is multiset operation INTERSECT ALL.
Maryam Ramezani Database Design 47

 SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –
 The result of R – S, is a relation that includes all tuples that are in R

but not in S
▪ The attribute names in the result will be the same as the

attribute names in R
 The two operand relations R and S must be “type compatible”

Maryam Ramezani Database Design 48

 The SET DIFFERENCE operation is not commutative, that means :

A - B != B - A

 In SQL, the operation EXCEPT is as same as MINUS operation here.
 Moreover, In SQL there is multiset operation EXCEPT ALL.

 INTERSECTION can be formed using UNION and MINUS as
follows:

A ∩ B = ((A ∪ B) - (A - B)) - (B - A)
Maryam Ramezani Database Design 49

 In theory, the two relation can not have an attribute with the same
noun.

 HR2  HR1 = 

Maryam Ramezani Database Design 50

 CARTESIAN (or CROSS) PRODUCT Operation
▪ This operation is used to combine tuples from two relations in a combinatorial

fashion.
▪ Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)
▪ Result is a relation Q with degree n + m attributes:
▪ Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

▪ The resulting relation state has one tuple for each combination of tuples—one
from R and one from S.

▪ Hence, if R has nR tuples (denoted as |R| = nR), and S has nS tuples, then R x S
will have nR * nS tuples.

▪ The two operands do NOT have to be “type compatible”

Maryam Ramezani Database Design 51

 Generally, CROSS PRODUCT is not a meaningful operation
▪ Can become meaningful when followed by other operations

 Example (not meaningful):
▪ FEMALE_EMPS  𝝈 SEX=’F’(EMPLOYEE)

▪ EMPNAMES  𝝅 FNAME, LNAME, SSN (FEMALE_EMPS)
▪ EMP_DEPENDENTS  EMPNAMES x DEPENDENT

 EMP_DEPENDENTS will contain every combination of EMPNAMES and
DEPENDENT
▪ whether or not they are actually related

Maryam Ramezani Database Design 52

 To keep only combinations where the DEPENDENT is related to the
EMPLOYEE, we add a SELECT operation as follows

 Example (meaningful):
▪ FEMALE_EMPS  𝝈 SEX=’F’(EMPLOYEE)
▪ EMPNAMES  𝝅 FNAME, LNAME, SSN (FEMALE_EMPS)
▪ EMP_DEPENDENTS  EMPNAMES x DEPENDENT
▪ ACTUAL_DEPS  𝝈 SSN=ESSN(EMP_DEPENDENTS)
▪ RESULT  𝝅 FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)

Maryam Ramezani Database Design 53

 To keep only combinations where the DEPENDENT is related to
the EMPLOYEE, we add a SELECT operation as follows

 Example (meaningful):
▪ FEMALE_EMPS  𝝈 SEX=’F’(EMPLOYEE)
▪ EMPNAMES  𝝅 FNAME, LNAME, SSN (FEMALE_EMPS)
▪ EMP_DEPENDENTS  EMPNAMES x DEPENDENT
▪ ACTUAL_DEPS  𝝈 SSN=ESSN(EMP_DEPENDENTS)
▪ RESULT  𝝅 FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)

 RESULT will now contain the name of female employees
and their dependents

Maryam Ramezani Database Design 54

 Write the following with MINUS, INTERSECT, UNION

▪ R WHERE (C1 AND C2)

▪ R WHERE (C1 OR C2)

▪ R WHERE NOT C

Maryam Ramezani Database Design 55

 Write the following with MINUS, INTERSECT, UNION

▪ R WHERE (C1 AND C2)
▪ (R WHERE C1) INTERSECT (R WHERE C2)

▪ R WHERE (C1 OR C2)

▪ (R WHERE C1) UNION (R WHERE C2)

▪ R WHERE NOT C

▪ R MINUS (R WHERE C)

Maryam Ramezani Database Design 56

Binary Relational
Operations

04

Maryam Ramezani Database Design 57

 JOIN Operation (denoted by ⋈)
▪ The sequence of CARTESIAN PRODECT followed by SELECT is used

quite commonly to identify and select related tuples from two relations
▪ A special operation, called JOIN combines this sequence into a single

operation
▪ This operation is very important for any relational database with more

than a single relation, because it allows us combine related tuples from
various relations

▪ The general form of a join operation on two relations R(A1, A2, . . ., An)
and S(B1, B2, . . ., Bm) is:

R ⋈ <join condition>S
▪ where R and S can be any relations that result from general relational algebra

expressions.

Maryam Ramezani Database Design 58

 Example: Suppose that we want to retrieve the name of
the manager of each department.
▪ To get the manager’s name, we need to combine each DEPARTMENT tuple with

the EMPLOYEE tuple whose SSN value matches the MGRSSN value in the
department tuple.

▪ We do this by using the join ⋈condition operation.

▪ DEPT_MGR  DEPARTMENT ⋈ MGRSSN=SSN EMPLOYEE

 MGRSSN=SSN is the join condition
▪ Combines each department record with the employee who manages the

department
▪ The join condition can also be specified as DEPARTMENT.MGRSSN=EMPLOYEE.SSN

Maryam Ramezani Database Design 59

Maryam Ramezani Database Design

❑ Give full details of producer-piece pairs from a city.

60

Maryam Ramezani Database Design

 Consider the following JOIN operation:
▪ R(A1, A2, . . ., An) ⋈𝑅.𝐴𝑖=𝑆.𝐵𝑗S(B1, B2, . . ., Bm)
▪ Result is a relation Q with degree n + m attributes:

▪ Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
▪ The resulting relation state has one tuple for each combination of tuples—r from R

and s from S, but only if they satisfy the join condition r[Ai]=s[Bj]
▪ Hence, if R has 𝑛𝑅 tuples, and S has 𝑛𝑆 tuples, then the join result will generally have

less than 𝑛𝑅 × 𝑛𝑆 tuples.
▪ Only related tuples (based on the join condition) will appear in the result. In this

example:
R.Ai = S.Bj

Must be the same domain and not the same name.

61

 The general case of JOIN operation is called a Theta-join:
 R ⋈𝒕𝒉𝒆𝒕𝒂 S
▪ The join condition is called theta.

 Theta can be any general boolean expression on the attributes of R
and S; for example:
▪ R.Ai < S.Bj AND (R.Ak = S.Bl OR R.Ap < S.Bq)

 Most join conditions involve one or more equality conditions
“AND”ed together; for example:
▪ R.Ai = S.Bj AND R.Ak = S.Bl AND R.Ap = S.Bq

Maryam Ramezani Database Design

=EQUI-JOIN

NOT EQUI-JOIN

<LESS THAN-JOIN

LESS EQUI-JOIN

>GREATER THAN-JOIN

GREATER EQUI-JOIN

Operations in join condition include

62

 The most common use of join involves join conditions with only
equality comparisons.

 Such a join, where the only comparison operator used is =, is
called an EQUIJOIN.
▪ In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names

need not be identical) that have identical values in every tuple.

Maryam Ramezani Database Design 63

 NATURAL JOIN Operation
▪ Another variation of JOIN called NATURAL JOIN — denoted by * or ⋈) — was

created to get rid of the second (superfluous) attribute in an EQUIJOIN condition.
▪ Because one of each pair of attributes with identical values is superfluous

▪ The standard definition of natural join requires that the two join attributes, or each
pair of corresponding join attributes, have the same name in both relations.

▪ If this is not the case, a renaming operation is applied first.

Maryam Ramezani Database Design 64

 Example: To apply a natural join on the DNUMBER attributes
of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:
▪ DEPT_LOCS  DEPARTMENT * DEPT_LOCATIONS
▪ Only attribute with the same name is DNUMBER.

 An implicit join condition is created based on this attribute:
▪ DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

 Another example: Q  R(A,B,C,D) * S(C,D,E)
▪ The implicit join condition includes each pair of attributes with the same name,

“AND”ed together:
▪ R.C = S.C AND R.D = S.D

▪ Result keeps only one attribute of each such pair:
▪ Q(A,B,C,D,E)

Maryam Ramezani Database Design 65

 Division operator 𝐴 ÷ 𝐵 or 𝐴/𝐵 can be applied if and
only if:
▪ Attributes of B is proper subset of Attributes of A.
▪ The relation returned by division operator will have attributes

= (All attributes of A – All Attributes of B)

Maryam Ramezani Database Design

▪ The relation returned by
division operator will return
those tuples from relation A
which are associated to
every B’s tuple.

A proper subset of a set A is a subset of A that is not equal to A.

66

 The division operation is applied to two relations R(Z) ÷ S(X), where X
subset Z. Let Y = Z - X (and hence Z = X ∪ Y); that is, let Y be the set of
attributes of R that are not attributes of S.

 The result of DIVISION is a relation T(Y) that includes a tuple t if tuples tR
appear in R with tR [Y] = t, and with tR [X] = ts for every tuple ts in S.

 For a tuple t to appear in the result T of the DIVISION, the values in t must
appear in R in combination with every tuple in S.

 For 𝑅3 = 𝑅1 ÷ 𝑅2

Maryam Ramezani Database Design 67

Maryam Ramezani Database Design 68

 Candidate key of 𝑅3 = 𝑅1 ÷ 𝑅2:
▪ 1) If C.K of R1 is in R3 header, then C.K(R3)=C.K(R1)

▪ 2) If C.K of R1 is not in R3 header, then C.K(R3)=all keys

Maryam Ramezani Database Design 69

Maryam Ramezani Database Design 70

 Write the Optimal Relational Algebra:

▪ S# of suppliers who have produced at least one product
▪ Solution:

▪ Specifications of suppliers who have produced at least one product
▪ Solution: The optimal version is:

▪ S# of suppliers who have produced all products
▪ Solution:

Maryam Ramezani Database Design 71

Relation “S” Relation “P” Relation “SP”

Additional Relational
Operations

05

Maryam Ramezani Database Design 72

 A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate
functions on collections of values from the database.

 Examples of such functions include retrieving the average or
total salary of all employees or the total number of employee
tuples.
▪ These functions are used in simple statistical queries that summarize information

from the database tuples.

 Common functions applied to collections of numeric values
include
▪ SUM, AVERAGE, MAXIMUM, and MINIMUM.

 The COUNT function is used for counting tuples or values.

Maryam Ramezani Database Design 73

 Use of the Aggregate Functional operation ℱ
▪ ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value from the

EMPLOYEE relation
▪ ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value from the

EMPLOYEE relation
▪ ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary from the EMPLOYEE

relation
▪ ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count (number) of

employees and their average salary

▪ Note: count just counts the number of rows, without removing duplicates

Maryam Ramezani Database Design 74

 The previous examples all summarized one or more
attributes for a set of tuples
▪ Maximum Salary or Count (number of) Ssn

 Grouping can be combined with Aggregate Functions

 Example: For each department, retrieve the DNO,
COUNT SSN, and AVERAGE SALARY

Maryam Ramezani Database Design 75

 A variation of aggregate operation ℱ allows this:
▪ Grouping attribute placed to left of symbol
▪ Aggregate functions to right of symbol
▪ DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)

 Above operation groups employees by DNO
(department number) and computes the count of
employees and average salary per department

Maryam Ramezani Database Design 76

 The OUTER JOIN Operation
▪ In NATURAL JOIN and EQUIJOIN, tuples without a matching (or related) tuple

are eliminated from the join result
▪ Tuples with null in the join attributes are also eliminated
▪ This amounts to loss of information.

▪ A set of operations, called OUTER joins, can be used when we want to keep all
the tuples in R, or all those in S, or all those in both relations in the result of the
join, regardless of whether or not they have matching tuples in the other
relation.

Maryam Ramezani Database Design 77

 The left outer join operation keeps every tuple in the
first or left relation R in R S; if no matching tuple is
found in S, then the attributes of S in the join result are
filled or “padded” with null values.

 A similar operation, right outer join, keeps every tuple
in the second or right relation S in the result of R S

 A third operation, full outer join, denoted by
keeps all tuples in both the left and the right relations
when no matching tuples are found, padding them with
null values as needed.

Maryam Ramezani Database Design 78

 Example

Maryam Ramezani Database Design 79

Maryam Ramezani Database Design 80

 For with k same columns:
▪ Degree:
▪ Cardinality:

 A Left Semi-join returns rows from the left table for which there
are corresponding matching rows in the right table.

 Unlike regular joins which include the matching rows from both
tables, a left semi-join only includes columns from the left
table in the result.
▪ 𝐑𝟑 ≔ 𝐑𝟏 ⋉𝐂 𝐑𝟐 = 𝚷

𝐇𝐑𝟏

(𝐑𝟏 ⋈𝐂 𝐑𝟐)

▪ Example:

Maryam Ramezani Database Design 81

 A Right Semi-join returns rows from the right table for which
there are corresponding matching rows in the left table.
▪ 𝐑𝟑 ≔ 𝐑𝟏 ⋊ 𝐑𝟐 = 𝚷

𝐇𝐑𝟐

(𝐑𝟏 ⋊𝐂 𝐑𝟐)

▪ Example:

Maryam Ramezani Database Design 82

 𝐝𝐞𝐠(𝐑𝟏 ⋉ 𝐑𝟐) = 𝐝𝐞𝐠(𝐑𝟏)
 𝐜𝐚𝐫𝐝(𝐑𝟏⋉ 𝐑𝟐) ≤ 𝐜𝐚𝐫𝐝(𝐑𝟏)
 𝐜𝐚𝐫𝐝(𝐑𝟏⋉ 𝐑𝟐) ≤ 𝐜𝐚𝐫𝐝(𝐑𝟏⋈ 𝐑𝟐)
 𝐂. 𝐊(𝐑𝟏 ⋉ 𝐑𝟐) = 𝐂. 𝐊(𝐑𝟏)
 𝐑𝟏 ⋉ 𝐑𝟐 ≠ 𝐑𝟐 ⋉ 𝐑𝟏

 𝐝𝐞𝐠(𝐑𝟏 ⋊ 𝐑𝟐) = 𝐝𝐞𝐠(𝐑𝟐)
 𝐜𝐚𝐫𝐝(𝐑𝟏⋊ 𝐑𝟐) ≤ 𝐜𝐚𝐫𝐝(𝐑𝟐)
 𝐜𝐚𝐫𝐝(𝐑𝟏⋊ 𝐑𝟐) ≤ 𝐜𝐚𝐫𝐝(𝐑𝟏⋈ 𝐑𝟐)
 𝐂. 𝐊(𝐑𝟏 ⋊ 𝐑𝟐) = 𝐂. 𝐊(𝐑𝟐)
 𝐑𝟏 ⋊ 𝐑𝟐 ≠ 𝐑𝟐 ⋊ 𝐑𝟏

 If 𝑯𝑹𝟏 = 𝑯𝑹𝟐 then 𝐑𝟏 ⋊ 𝐑𝟐= 𝐑𝟏 ⋉ 𝐑𝟐= 𝐑𝟏 ⋈ 𝐑𝟐 = 𝐑𝟏 ∩ 𝐑𝟐

Maryam Ramezani Database Design 83

 R ▷ S
 It is Exactly the opposite to semi-join.
 An Anti-join returns rows from the left table for which

there are no corresponding matching rows in the right
table.

 Example:

Maryam Ramezani Database Design 84

 R3 = R1 SEMIMINUS R2 = R1 MINUS (R1 SEMIJOIN R2)
 HR3

= HR1

Maryam Ramezani Database Design 85

 Retrieve the name and
address of all employees
who work for the ‘Research’
department.

 Retrieve the names of
employees who have no
dependents.

Maryam Ramezani Database Design 86

 Retrieve the name and address of all employees who
work for the ‘Research’ department.

Maryam Ramezani Database Design 87

 Retrieve the names of employees
who have no dependents.

Maryam Ramezani Database Design 88

Complete Set of
Relational Operations

05

Maryam Ramezani Database Design 89

 The set of operations including SELECT 𝜎, PROJECT 𝜋 ,
UNION ∪, DIFFERENCE − , RENAME , and CARTESIAN
PRODUCT × is called a complete set because any
other relational algebra expression can be expressed
by a combination of these five operations.

 For example:
▪ 𝑅 ∩ 𝑆 = 𝑅 ∪ 𝑆 − 𝑅 − 𝑆 ∪ 𝑆 − 𝑅 = 𝑅 − 𝑅 − 𝑆

▪ 𝑅 ⋈𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆 = 𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑅 × 𝑆)

Maryam Ramezani Database Design 90

 Division can be expressed in terms of Cross Product , Set
Difference and Projection. How??

Maryam Ramezani Database Design 91

 Division can be expressed in terms of Cross Product , Set
Difference and Projection. How??

Let R(A,B) and S(A), we want to do R÷S.

 take 𝑇1 = 𝜋𝐵(𝑅) using project operator
 take 𝑇2 = 𝑆 × 𝑇2 (cross product)
 take 𝑇3 = 𝑇2 − 𝑅

take 𝑇4 = 𝜋𝐵(𝑇3) using project operator
 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑇1 − 𝑇4

 Thus, we implemented Division operator using Project, Difference and Cross product which
are all present in Minimal set of operators

Maryam Ramezani Database Design 92

 Natural join can be expressed in terms of Cross Product ,
Select and Projection. How??

Maryam Ramezani Database Design 93
Natural Join

cross product, select & project

Example

 Left outer join can be expressed in terms of complete set.
How??

Maryam Ramezani Database Design 94
Left Outer Join

Example

Any Question?

Maryam Ramezani Database Design 95

	Slide 1
	Slide 2
	Slide 3: Introduction
	Slide 4: Review-Formal Definitions
	Slide 5: Review-Formal Definitions
	Slide 6: Formal Definitions - Summary
	Slide 7: Formal Definitions - Example
	Slide 8: Definition Summary
	Slide 9: Example – A relation STUDENT
	Slide 10: Characteristics Of Relations
	Slide 11: Characteristics Of Relations
	Slide 12: Characteristics Of Relations
	Slide 13: Review: Key Constraints
	Slide 14: Review: Entity Integrity
	Slide 15: Relational Operations Overview
	Slide 16: Example
	Slide 17
	Slide 18: SELECT
	Slide 19: SELECT
	Slide 20: SELECT
	Slide 21: SELECT
	Slide 22: SELECT
	Slide 23: PROJECT
	Slide 24: PROJECT
	Slide 25: PROJECT
	Slide 26: PROJECT
	Slide 27: PROJECT
	Slide 28: PROJECT
	Slide 29: EXTENDED PROJECT
	Slide 30: Relational Algebra Expressions
	Slide 31: Single expression versus sequence of relational operations
	Slide 32: RENAME
	Slide 33: RENAME
	Slide 34: RENAME
	Slide 35: Database State for COMPANY
	Slide 36: Examples
	Slide 37: Example
	Slide 38
	Slide 39: Relational Algebra Operations from Set Theory
	Slide 40: UNION, INTERSECTION, MINUS
	Slide 41: UNION
	Slide 42: UNION
	Slide 43: UNION
	Slide 44: UNION
	Slide 45: UNION
	Slide 46: INTERSECTION
	Slide 47: INTERSECTION
	Slide 48: SET DIFFERENCE (MINUS)
	Slide 49: MINUS
	Slide 50: CARTESIAN PRODUCT/TIMES
	Slide 51: CARTESIAN PRODUCT
	Slide 52: CARTESIAN PRODUCT
	Slide 53: CARTESIAN PRODUCT
	Slide 54: CARTESIAN PRODUCT
	Slide 55: Example
	Slide 56: Example
	Slide 57
	Slide 58: JOIN
	Slide 59: JOIN
	Slide 60: Example
	Slide 61: Some properties of JOIN
	Slide 62: Theta-JOIN
	Slide 63: EQUIJOIN
	Slide 64: NATURAL JOIN
	Slide 65: NATURAL JOIN
	Slide 66: DIVISION
	Slide 67: DIVISION
	Slide 68: Example of DIVISION
	Slide 69: DIVISION
	Slide 70: Recap of Relational Algebra Operations
	Slide 71: Example
	Slide 72
	Slide 73: Aggregate Functions and Grouping
	Slide 74: Aggregate Function Operation
	Slide 75: Using Grouping with Aggregation
	Slide 76: Using Grouping with Aggregation
	Slide 77: OUTER JOIN
	Slide 78: LEFT & Right OUTER JOIN
	Slide 79: LEFT & Right OUTER JOIN
	Slide 80: LEFT & Right OUTER JOIN
	Slide 81: LEFT SEMI-JOIN
	Slide 82: RIGHT SEMI-JOIN
	Slide 83: SEMI-JOIN
	Slide 84: ANTI-JOIN
	Slide 85: SEMI-MINUS
	Slide 86: Examples of Queries in Relational Algebra
	Slide 87: Examples of Queries in Relational Algebra
	Slide 88: Examples of Queries in Relational Algebra
	Slide 89
	Slide 90: Complete Set of Relational Operations
	Slide 91: DIVISION
	Slide 92: DIVISION
	Slide 93: NATURAL JOIN
	Slide 94: LEFT-OUTER JOIN
	Slide 95

